更多>>精华博文推荐
更多>>人气最旺专家

陈桓公

领域:新中网

介绍:三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。...

米山雄太

领域:tom网

介绍:总结是应用写作的一种,是对已经做过的工作进行理性的思考。利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服

利来国际娱乐官方网站
本站新公告利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服
n3s | 2018-12-13 | 阅读(504) | 评论(878)
《高速铁路隧道工程施工质量验收标准》(TB10753-2010)条款规定,喷射混凝土的强度必须符合设计要求。【阅读全文】
利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服
co4 | 2018-12-13 | 阅读(328) | 评论(597)
研修班的学习,从某种意义上讲,与其说是获得新知,不如说是更新观念,或者是让以前的教学理念有一个重新的建构。【阅读全文】
vxd | 2018-12-13 | 阅读(416) | 评论(485)
全国人大行使的四项职权有“最高”两字,而全国人大常委会作为全国人大的常设机关,在全国人大闭会期间行使部分职权,故其行使的四项职权没有“最高”两字。【阅读全文】
rop | 2018-12-13 | 阅读(749) | 评论(674)
别人送他一头大象,他很高兴,带着儿子和官员们一同去看。【阅读全文】
wiu | 2018-12-13 | 阅读(59) | 评论(298)
(1)科技思想:注重实践,讲究天人合一,尊重自然。【阅读全文】
3fb | 2018-12-12 | 阅读(310) | 评论(299)
所刊登的资料信息(包括但不限于文字、图标、图像等),均是文档投稿赚钱网或其内容提供者所持版权,受《中华人民共和国著作权法》保护。【阅读全文】
u1u | 2018-12-12 | 阅读(504) | 评论(902)
法院浓厚的政治学习氛围深深的感染着我,我积极参加团支部、党组织的各项政治学习活动,并注重自学,认真学习了胡锦涛在邓小平诞辰百年纪念大会上的讲话、胡锦涛七一重要讲话、十六届四中全会关于加强党的执政能力的决定等,进一步提高了自己的理论水平与政治素质,保证了自己在思想上和党保持一致性,强化了廉洁自律的自觉性。【阅读全文】
sz2 | 2018-12-12 | 阅读(16) | 评论(92)
下列选项中能正确描述该政策对经济影响机制的是A.货币供应量增加—利率上升—投资减少—总需求减少B.货币供应量减少—利率降低—投资减少—总需求减少C.货币供应量减少—利率上升—投资增加—总需求增加D.货币供应量增加—利率降低—投资增加—总需求增加D(201【阅读全文】
利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服,利来国际在线客服
jvb | 2018-12-12 | 阅读(300) | 评论(349)
”在论坛上发帖声称自己是“傻妈妈”的huanghj2882在帖子里说,今年花了近3万元给9岁的儿子报了少儿编程,当时在课程老师的推荐下从scratch学起,上了快40节课后,和亲戚家的孩子一比,才发现花了这么多钱和时间,儿子的进步并不大。【阅读全文】
bx2 | 2018-12-11 | 阅读(647) | 评论(669)
为了高标准的完成好各项工作任务,在平日的工作中我能主动要求加班加点,尽职尽责、无怨无悔,全力确保工作任务的万无一失。【阅读全文】
dkg | 2018-12-11 | 阅读(378) | 评论(390)
经过跟板房纸样师博沟通,研究,发现出现此现象主要是穿着者的腿部肌肉比较发达。【阅读全文】
frn | 2018-12-11 | 阅读(581) | 评论(734)
陕西科技大学硕士学位论文0.6%t1-2]。【阅读全文】
1zu | 2018-12-11 | 阅读(623) | 评论(347)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
mtu | 2018-12-10 | 阅读(752) | 评论(835)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
j0p | 2018-12-10 | 阅读(305) | 评论(261)
;请同学们大声地朗读课文。【阅读全文】
共5页

友情链接,当前时间:2018-12-13

利来国际老牌博彩 利来国际家居集团 利来国际旗舰版 w66利来国际 利来电游彩金
利来娱乐帐户 wwww66com利来 利来国际ag旗舰厅app 利来国际老牌 利来w66
利来电游彩金 利来娱乐国际最给利老牌网站是什么 利来国际备用 利来娱乐网 利来娱乐
利来国际w66最新 利来官方网站w66利来 利来娱乐帐户 利来国际手机客户端 利来国际旗舰版
嘉峪关市| 沙洋县| 赤峰市| 原阳县| 武鸣县| 景德镇市| 凤阳县| 怀来县| 信宜市| 杂多县| 五原县| 莎车县| 微博| 文成县| 大关县| 天长市| 西乡县| 昌吉市| 安化县| 安徽省| 水富县| 灵石县| 祁连县| 三江| 田东县| 山丹县| 磐安县| 南康市| 水富县| 麟游县| 临西县| 汤原县| 新巴尔虎右旗| 泗水县| 门源| 平潭县| 定州市| 禹城市| 梁河县| 汤原县| 天镇县| http:// http:// http:// http:// http:// http://